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This article is concerned with the numerical solution of the Ginz-
burg-Landau (GL} model for type-ll superconductors in thin films
(two-dimensional periodic domains). A new gauge is defined that
reduces the coupling between the equations for the nonzero compo-
nonts of the vector potential. The GL equations are written in a
symmetric form by means of continuous link variables. A second-
order accurate scheme is used for the numerical approximation,
Numerical experiments demonstrate that the discrete GL model
leads to asymmetric solutions in the plane; symmetry is recovered
only in the limit as the mesh size goes to zero. Results of computa-
tional experiments to find the upper critical field and an empirical
power law for vortex interactions are given. @ 1985 Academic Press, Inc.

1. INTRODUCTION

In the Ginzburg—-Landau (GL} theory [1]. the physical state
of & superconductor is described by two variables, the order
paranteter fr and the vector potential A. The quantily  is a
complex scalar-valued function of position; the square of its
modulus, |3, represents the local density of superconducting
electrons (“*superclectrons™ ). The quantity A is a real, three-
dimensional, vector-valued function of position, which deter-
mines the electromagnetic variables; the induced magnetic field
is B =V X A, and the superelectron current (*‘supercurrent’)
density j, is a nwitiple of V. X B =V X V X A. A stale of
thermodynamic equilibrium corresponds to a global minimum
of the Gibbs frec energy. 1f £} is the spatial domain occupied
by the superconductor, then the Ginzburg—Landau approxima-
tion for the Gibbs free encrgy (suitably nondimensionalized) is

Gk A) = [ (=l + 3ol 4 |V = Al )
+ Kt

B — 2x11- By dx.

Here, H is the applied magnetic field. In the normal {nonsuper-
conducting) state, ¢ = 0 and the induced magnetic field B is
proportional to H; contributions to the Gibbs free energy from

*'This work was supported by the Office of Scientific Computing, U.S.
Department of Energy, under Contract W-31-109-Eng-38. The U.S. Govern-
ment’s right 10 retain a nonexclusive royalty-free license in and to the copyright
covering this paper, for governmental purposes, is acknowledged.

DG21-099 193 $n0.00
Copytight © 1995 by Academic Press. Tne.
Adl rights of reproduction in any form reserved.

normal regions have been ignored. The unit of length in (1.1)
is the coherence length (the length scale for variations of ).
The parameter « is the Ginzburg—Landau parameter, which is
the ratio of the London penetration depth (the length scale for
variations of B} and the coherence length.

As was lirst demonstrated by Absikosov [2], superconducting
materials with & > 1/V2 {type-I[ superconductors) can sustain
aspatially regular pattern of vortices, which are generated much
like in fluid dynamics by the circular motion of superelectrons
around normal cores. The supercurrent shields the supercon-
ducting region from the normal cores, thus preventing the mag-
netic flux lines from penetrating into the superconducting
region,

Typical length scales in a flux line lattice are several orders
of magnitude smailer than the size of a superconducting device,
so a complete simulation of the latter is impossible. However,
since the flux lines appear to align themselves in a regular
spatial pattern, it is common practice to concentrate on the
phenomena in the bulk of the medium and ignore boundary
effects. We follow this practice and study the GL model on a
periodic domain, choosing the boundary conditions on the unit
cell in such a way that periodicity is imposed on measurable
physical quantities, such as the current and the induced mag-
netic field.

In this article, we are concerned with thin-film superconduc-
tors in a uniform applicd magnetic field normal to the plane of
the film. This configuration gives rise to a two-dimensional
problem on a periodic domain. The problem has been discussed
by many authors, beginning with Abrikosov 2], We mention
in particular two recent articles by Du er al. |3, 4], who discuss
several mathematical aspects of the GL model and its numerical
approximation by means of finite elements. The GL model in
two-dimensional periodic domains has been the subject of sev-
eral numerical investigations, most recently by means of optimi-
zation techniques; for example, see Doria ef al. [5], Wang and
Hu (6], and Gamer et af. [7].

We introduce a new gauge in which the equations for the
two nonzero components of the vector polential are only weakly
coupled through the order parameter. The weak coupling leads
1o a significant reduction in the numerical computations (Sec-
tion 2.2). We write the GL equations in a symmetric form by
introducing continuous link (or bond) variabies. The symmetric

120



VORTEX CONFIGURATIONS IN SUPERCONDUCTING FILMS

form has particular advantages from an analytical as well as
numerical point of view (Section 2.3). Using the symmetric
form of the GL equations, we prove that the discrete GL model,
which is commonly derived by approximating first-order deriv-
atives by means of forward differences, is in fact second-order
accurate (Section 3.1). We show computationally that a discrete
GL model leads to asymmetric solutions in the plane and that
symmetry is recovered only in the limit as the mesh size goes
to zero (Section 4.2), We determine the upper critical field
through computational experiments (Section 4.3) and establish
an empirical power law for vortex interactions {Section 4.4).

2. GINZBURG-LANDAU MODEL

2.1. Two-Dimensional Periodic Domain

We restrict ourselves to the case of a thin-film superconductor
in a uniform applied field normal to the plane of the film. This
problem is strictly two-dimensional; the order parameter varies
in the plane of the film, and the vector potential has only two
nonzero components, which lie in the plane of the film. We
identify the domain of the superconductor with R?, denoting
the (Cartesian) coordinates by x and y and the x- and y-compo-
nents of the vector potential by A, and A,, respectively. If H
is the strength of the applied magnetic field, then H = (0, 0,
H). The induced magnetic field is B = (0, 0, B), where B =
a4, — d,A,.

We are interested in solutions of the GL model that yield
measurable quantities that are periodic in the plane. Given two
arbitrary vectors t, and t, that span R?, we say that a function
f1s periodic with respect to the lattice determined by ¢, and t,
iff(ix + 1) = f(x) fork = 1,2 and for all x = (x, y) € R%.
The measurable quantities are the superelectron density, |2,
the induced magnetic field, V X A, and the supercurrent,
V X V X A. These quantities are periodic if ¢ and A (that is,
A, and A,) satisfy

P(x + t,) = P(x) explig(x)),
Alx +t) = A(x) + (Vg (x),

k=12,
k=12,

(2.1
2.2)

for all x = (x, y) € R?, where

£6(X) = C, —3B((1 + Otpx — (1 — Dy), k=1,2. (2.3)
Here, 6, C), and C, are arbitrary constants; cf. [4]. The constant
B is the average (induced) magnetic field strength. The assump-
tion of fluxoid quantization (cf. [8, Section 4.5])—mathemati-
cally equivalent to the requirement that ¢+ be single-valued—
relates this quantity to the area of a lattice cell, |t, * tzl, and
the number of vortices per lattice cell, n,

2nn

B=—"""_
|t, < t,]

(2.4)
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We assume without loss of generality that t, points into the
right half of the (x, ¥)-plane and that t, points in the direction
of the positive y-axis. A convenient representation is

t, = (el LY, t = (0, L), (2.5)
where L > (), ¢ > 0, and 8 is a real number. We refer to &
as the aspect ratio and B3 as the lattice angle.

Remark. It is common to reduce the complexity of the
problem by assuming hexatic order and rotational symmetry
in the plane, The only admissible values are then o = /3 and
B = 1. However, there is no a priori reason to assume hexaltic
order and rotational symmetry; if such symmetries are present,
they should follow from the model. In principle, one should
keep o« and B8 as free parameters in the model. We will do
so in the following analysis and come back to this point in
Section 4,

We now choose the constants 8, C,, and C, in (2.3) to reduce

the periodicity conditions (2.1) and (2.2) to their simplest form,

6=-1, ¢,=0, ¢ =0. (2.6

The choice of C, and C, is motivated by the fact that the phase

of Y will thus be the same at all vertices of the lattice. For

k = 1, the conditions (2.1) and (2.2) yield a set of modulated
periodicity conditions,

U(x + L,y + BL) = i(x, y)e®, 2.7
Adx+al,y + BL) = A(x, ¥),
Adx tal,y+BLY=A x,y) t g (2.8)
where
g = aBL = 2mn/L. 2.9

For k = 2, the conditions (2.1) and {2.2) reduce to the usual
periodicity conditions in the y-variable,

ylx, y + L) = (x, ¥},
Adx, y+ L) = Ax, ¥},

(2.10)
Adx,y + L) = Ay (211

These conditions must be satisfied at all points (x, v} in the plane.

Remark. There is no agreement in the literature on the
choice of the constants 6, C,, and C, in {2.3). For example,
one finds the choice # = 1, C, = 0, and C; = —4(Bla)BL? in
[9; 6 = 0, C, = 0, and C; = Q in {4, 10]; the choice (2.6),
with 8 = 0, is the same as in [5].

At this point, it is natural to identify the domain {} with a
unit cell of the lattice generated by t, and t,—that is, take for
1 the open parallelogram spanned by t, and t,—and replicate
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the results obtained for {1 to the entire plane by repeated applica-
tion of the periodicity conditions. This is indeed the approach
taken by Du er al. in their analysis of the GL equations in [4].
However, because our model is fully periodic in the y-direction,
we may as well identify ) with the rectangle [0, al] X
[0, L], so henceforth we take

0 =10, al] X [0, L]. (2.12)
This identification explains the terms “‘aspect ratio™” and *‘lat-
tice angle”” for & and 3, respectively.

2.2, Canonical Gauge

The Gibbs free energy functional (1.1) is gauge invariant.
That is,

G, A) =6(4, A), (2.13)
for any two pairs (4, A) and (Y A) that are related by an
tdentity of the form

= e, A=A+Vy, (2.14)
where the gauge y is a real-valued function of position. The
pairs (i, A) and (y, A) give the same superelectron density,
supercurrent, and magnetic field, so they can be considered as
equivalent representations of the same state of the material. By
varying the gauge, one obtains an entire class of equivalent
representations. Choosing a gauge amounts to deciding on a
canonical representative from a class of gauge-equivalent repre-
sentations. This extra degree of freedom, which is inherent in
the GL meodel, can be used to considerable advantage. By
tailoring the gauge to the particular problem of interest, one
can always single out the most appropriate canonical representa-
tive and study the problem in its simplest form.

Lemma 1. Forany triple (i, A, A)) satisfving the periodic-
ity conditions (2.7)-(2.11) and any real number vy, there exists
a gauge-equivalent triple (i, A, , Z,‘,) satisfying the same period-
icity conditions, such that (i) arg W0, 0) = 0: (i) A,(x, yx) =
A0, 0) for all x; and (iii) A,(x, ¥) = A(x, 0) for all (x, y).

Proof. Take

Xy = e+ [ a0 = Ax pldn
(2.15)

+ f o= A& ¥E) + ¥{a () — A& vHT dé,

where

—arg $(0,0) if ¢(0,0) # 0,
0 if ¢(0,0) = 0,
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a,(x} = %j: Ax, n)dn,
1 ol
@ oL f o A& ¥E) — a6 — A& yO dé,

and use the gauge transformation (2.14). i

We refer to the gauge defined in Lemma I as the canonical
gauge. From now on, we always assume that the canonical
gauge has been chosen and use (i, A,, A,) to denote the resulting
canonical representative. Hence, ¥ is real-valued at the origin,
A; is constant along the line y = yx for some real y, and A, is
a function of x only, Normally, we take v = 0, s0 A, is constant
along the lower edge of (1.

Remark. Doria et al. [5] erroneously claimed that the gauge
can be chosen so that A, is identically zero. The error was
pointed out by Wang and Hu [6]. While it is true that there
exists a member in the equivalence class for which A, is identi-
cally equal to zero, this member may not satisfy the periodic-
ity conditions,

2.3. Ginzburg-Landaun Equations

We now consider the Gibbs free energy and show how the
canonical gauge simplifies the contributions from the magnetic
field in (1.1).

First, the contribution from the applied magnetic field to the
Gibbs free energy is constant and equal to dwnxH. It can there-
fore be ignored for our purposes.

Second, because A, is independent of y and A, is periodic in
¥, the integral of the cross product (3,4,)(8,4,) over {1 vanishes:

J'n (0.A,)(8,A,) dx dy
(2.16)
al L
- f “(0.,) f " (9,A) dy dx = 0.
Hence, in the canonical gauge we have
J 0 B dx = fﬂ 10,A, — 3,A, dx dy
2.17)

= [, @A) + @A) dxd.

Thus, the relevant expression for the Gibbs free energy in the
canonical gauge is

G AnA) = [ (Ll + Hodray

+ f 00 = IAYUE + 13, — iA )yl (2.18)

+ 148,40+ KH(0,A)) dx dy.
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The usual GL equations are obtained from (2.18) by minimiz-
ing % over the class of admissible triples (, A., A,). Here,
admissibility is determined by the periodicity conditions (2.7),
(2.8), (2.10), and (2.11), and by the constraint that A, be constant
along the line y = yx for some real y. In the canonical gauge,
the periodicity conditions reduce to

lal, y + BLY = (0, y)e®, Afal,y + BL) = A0, y),(2

1%
Afol) = A,0) + g

for all y € [0, L], and

Ulx, L) = (x, 0), Ax, L) =A.(x,0) (2.20)
for all x € [0, wl]. We recall that g = 2mn/L, where n is the
number of vortices per unit cell. In (2.19), thq argument y + 8L
must be taken mod(l) to achieve a value in the interval [0, L].

However, we prefer to introduce new variables before we

take variations. These variables are the link or bond variables,

Udx,y) = eFaend [ (x, y) = e blendn (221)
(The specific values of the lower limits on the integrals are
ircelevant.) In the canonical gauge, U (x, v} = e"s™ The link
variables are normally introduced only in the context of the
discrete GL mode! to restore gauge invariance [5, 11]. The idea
of preserving gauge invariance by means of link variables has
its origin in lattice gauge theory; cf. [12, 13].
Without changing its value, we write % in the form

G A A) = [l o ety dxdy

+ J o UBLURE + o, (Ur il (2.22)

+ &H(3,A Y + kN9, A)) dx dy.

Minimizing this expression over all admissible triples (¢, A,,
A;) leads to a symmetric form of the GL equations,

U 0XUR) + U3 UEp + (1 = [¢Hg =0 onQ,
K2BA, + (ImfFapy — |¢fA) =0 on (),

(2.23)
(2.24)

KAT + % j ; (Im(y*a,) — [¥PA,}dy =0 onl0, aLl.
(2.25)

A superscript * denctes complex conjugation, a superscript
differentiation with respect to x. Note that (2.23) and (2.24)
are partial differential equations, while (2.25) is an ordinary
differential equation. Equations (2.24) and (2.25) are only
weakly coupled, in the sense that the coupling is indirect
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through . This 1s an immediate result of the choice of the
canonical gauge.

Note that o and B, which are free parameters, do not occur
in the differential equations. However, they enter (nonlinearly)
into the solution through the boundary conditions (2.19). Conse-
quently, the correct procedure is to solve the boundary value
problem for the triple (i, A,, A,) on €} for given values of «
and 83, to compute the value of the free energy for each solution,
and then to minimize the free energy with respect to e and .
Once o and 3 and the corresponding triple (4, A,, A, are known
on £}, we extend the solution to the entire plane by replication.

2.4. Properties of the Solution

The following lemma shows that the superelectron density
in the mixed state is less than the superelectron density in
the ideal (i.e., Meissner) state. Its proof provides yet another
illustration how gauge invariance can be used to find the sim-
plest representation of a particular problem.

Lemma 2. If (4§ A,, A)) is a solution of the GL equations,
then either || << 1 everywhere or || = 1 everywhere.

Proof. Suppose that || mas a maximum at some point P.
This maximum is positive, so there must be a neighborhood
N(P) of P, where ¢ does not vanish. Then we can choose the
gauge y such that  is real in N{P); we need only to take y =
—arg ¥ in N(P).

Equation (2.23) consists of a real and an imaginary part,
Near P, the real part reads

R+ o+ (1 - gHy=0 (2.26)
Here, the sum of the first two terms is negative or at most zero
at £, so it must be the case that ¢4 = | at P. If ¢ = 1 at some
point in the interior of N{P), then it follows from the maximum
principle that ¢ = 1 everywhere inside N(P). The proof is now
completed by means of a compactness argument. |

The gauge used in the proof of the lemma cannot be defined
continuously in the neighborhood of a vortex point, where
vanishes, so the assumption that # is real holds at best locally,
Another proof of Lemma 2 can be found in [4].

With 4 = |]e™, the expression for the supercurrent density is

is = |9fad — AL 8,4 — A, O 2.27)

Remark. It seems impossible to obtain the expression (2,27)
directly from the functional (2.22) and the GL equations (2.23)-
(2.25). In terms of A, and A,, we have j, = «%(~&A,,
89,4, — 3A,, 0)". From (2.24) we obtain the (pointwise)
identity —«?3?A, = |/*(8,¢ — A,} and thereby the x-component
of the supercurrent density given in (2.27). But the y-component
cannot be obtained in this way; in fact, using the periodicity
condition (2.20) for A,, we find from (2.25) that
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[F oo, - 2aydy = [ [wPo,6— a)dy, (228)

so while it is true that the identity

K(3,8,A, — 32A,) = (8,6 — 4,) (2.29)

holds irt the mean (that is, averaged over the interval [0, L])
for each x € |0, aL], we cannot conclude that (2.29) is true
pointwise (that is, for each (x, ¥) in {}). On the other hand,
(2.29) follows directly when we apply the variational method
to (1.1). Since the canonical gauge does not affect the expression
for the current density, it must be the case that (2.29) holds
pointwise.

3. DISCRETE GINZBURG-LANDAU MODEL

3.1. Approximation Procedure

We next proceed to discretize the GL. model for the purpose
of computation. Qur computational domain is the rectangle (}
introduced in (2.12). We use a uniform grid of N, X N, points,
not counting the points on the top and right boundaries of the
rectangle. The latter are identified with the corresponding points
on the bottom and left boundaries, respectively. The grid spac-
ings in the x- and y-directions are A, and A,,

h, = aLIN,, h,= LIN,. G.1)

We define the matrix ¢ &€ C¥*¥, whose elements are the values
of the order parameter at the gridpoints,

,Nx_

gy = Wik, jh), i=0, .. =0,..N,—- 1. (32

1,7

Next, we define the matrix A, € R%*" by taking the values of
the x-component of the vector potential at the midpoints of the
horizontal grid edges,

A.r.r'j = Ax((t + %)hxsjh’y), t = Os aary Nx - 19

=0, N.— 1.

(3.3

Since the y-component A, of the vector potential does not vary
in the vertical direction, we define the vector A, € R by
taking

A=Ak, i=0,. N — L (3.4)
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FIG. 1. (Left} Evaluation points for y (@), A, (X), and 4, (O). (Right)
The domains Q (solid frame), 2, Q1, and )7 (dashed frames).

The various evaluation points are indicated in Fig. 1 (left). To
obtain a discrete approximation to the free-energy functional
(2.22), we partition the domain £} in four different ways. Let

Qi ={,NEQ: (G —Hh, <x < (i + Dh,

(j=9h <y<(j+dh}, (35
7Y EQ i <x<(i+ Dh,
(J— Bhy <y <{(j+Ddh} (36
Ql={» e i~ Hr <x<(+ dh,
jhy <y <(j+ Dh}, (3.7)
Q= {(x, )€ Qih, <x < ({+ Dh,
Jh <y <(j+ D}, (38)

wrapping around at the edges of (). The various domains are
illustrated in Fig. 1 (right).

Note that the partitions are chosen in such a way that ¢ is
the value of ¢ at the center of {);, A, ; is the value of A, at the
center of (17, and A, is the value of A, at the center of ;.

Without changing its value, we write the free-energy func-
tional in the form

N

LAY
a(. A4 =3 [, (~lok+ 3ok ety

/

+3 [ Qo ur dedy

+3 [ o drdy  (39)
i 4y
> j (@A) dxdy
i SIU-
+i2S j (9.A) dx dy.
i g
We approximate each integral individually,
1 1
Jo (o = 1ot asas = (-t + 2ok ) . 10
’
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[, lourntr dxdy

U + Dby jh)har, — Uf‘(fhnjky)iﬂﬁdr
~ ; hoh,

i, h i
= hx .y

2
i — exp (1‘ f{{+l)hx Ax, jhy) dx) i

2

‘!’m.f - Ux.ij 4’11' hlh}.,

h

2

(3.11)

[ s 6z axdy

2

hoh

¥

U;k(lhxa (J + l)hy)¢'i,j+l - U:k(lh:(a.]h\)!:bu
h,

2

o1 — explif, A, Iy o,

h}'

Yo — Uiy
I,

2

hehys

(3.12)

P (3.13)

¥

A — Ay :
|, @aydray= (—M) hoh,,
if

A)‘,H-].j - A_\‘.ij

2
Jﬂﬁ (0,A,) dx a’yw( p ) hehy  (3.14)

In the integrals over {27 and 1), we have introduced the

discrete link variables,

Uy = e, Uy, = e, (3.15)
which are elements of a matrix I/, € R%*% and a vector
U, € R%, respectively. These are the link variables commonly
used in discrete GL. models to maintain gauge invariance; cf.
[5, 11

Summing over i and j, we thus obtain the following approxi-
mation to the free-energy functional (2.22):

Ay = 3 (ot Jlot )

gri

2

2
—- to_
W huxw' +‘w Uy G.16)

hy

2
A7 — A, )h N
I8 o

Here, the notaticn is obvious; the sums extend over all grid

+2(

gnd

2

Al — A,
H

v

+ K2 it
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points, and neighboring points are indicated by arrows pointing
in the appropriate direction. When it comes to boundary points,
the notion of “‘neighbor’” has to be interpreted in the usual
way for a periodic domain, with an additional wwist because of
the modulated periodicity conditions in the x variable. Because
full periodicity is imposed in the y-direction, it suffices to
simply wrap the rows around, identifying corresponding points
on the lower and upper boundary of {} and identifying values
of the variables at these points. However, when wrapping the
columns around, thus identifying corresponding points on the
left and right boundaries, we must increase or decrease the
phase of the order parameter by gy and the function A, by g,
as indicated by {2.19).

LemMma 3. The discrete functional (3.16) is a second-order
approximation to the continuous functional (2.22),

Gy AL A) =G0 ALA) O ash— 0, (3.17)

where b = max{#,, h}.

Proof.  The approximations to the integrals over the subdo-
mains all involve evaluations of the integrands at the centers
of the subdomains, and the derivatives at the centers are approx-
imated by central differences. |

The functional (3.16) is invariant under a discrete gauge
transformation,

— . — - — — T —
s A,=Ax+xh X Ay=Ay+lTX.

(3.18)

Here y € RY*" is a matrix whose entries may be identified
with the values of a continuous gauge function at the grid
pOil'ltS, Xi = X(Ihn ]h\)

3.2. Discrete Ginzburg-Landau Equations

The discrete Ginzburg—-Landau equations are obtained either
by minimizing %, with respect to variations in (the real and
imaginary part of) s, A, 4, and A,; or directly by evaluating
(2.23) at the grid points, (2.24} at the midpoints of the horizontal
grid edges, and (2.25) at the midpoints of the vertical grid
edges, and using central differences to approximate the deriva-
tives. The equations are

Fl =L+ (1 — =0, (3.19)
kT~
FAA] = k*FA, + I—“ﬁl’fj—‘ﬁ’——) =g, (3.20
% o feh
F Al =LA, + 1 2 Im(y Uiy ) =0, (3.21)

N, y eolumn ] v

where ¥ is a linear operator acting on CY>,
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e s
Ef=F(A AN = U™ — 2+ Urdy

3
(3.22)
N Uyt =29+ Uy
h? ’
X is a linear operator acting on R,
Al =24, + A
LA =75 (3.23)
2
and ¥, is a linear operator acting on R%,
Ay — 24, + A7
LA =T—"1" (3.24)

ki

When it comes to grid points on the boundary, the concept of
“neighbor’ in all these expressions has to be interpreted with
proper account of the modulated periodicity conditions, as ex-
plained after (3.16).

The following lemma gives some properties of the operators

¥, £, and £,

LemMma 4. The operator £ is negative-definite Hermitian.
The operators &, and £, are negative semi-definite and sym-
metric.

Progf. The operator £ is the sum of two operators, £,
and ¥£,, corresponding to the first and second term in (3.22),
respectively, and each of these operators is in turn a direct sum
of operators that act on one single row or colunin. The latter
are Hermitian and negative semi-definite; more specifically,
they are negative definite unless the elements of A, or A, in-
volved are all zero. As not all summands vanish simultaneously,
their sum must be negative definite.

The operators &£, and £, are symmetric and negative semi-
definite, but not negative definite; the constant vector is in the
null space of each. |

At each grid point P, £y is a linear combination of the
values of ¢ at P and at its four neighbors (left, right, up, and
down). The pattern is similar to the standard finite-difference
discretization of the Laplacian, Ay, except that the coefficients
depend on the values of A, and A, at P and its neighbors. This
obviously complicates matters, but as we shall demonstrate
below, it is possible to design an efficient numerical scheme
for the inversion of ££. The operators £, and &£, are the standard
finite-difference discretizations of the second-order ordinary
differential operator in the x and y directions, respectively.
Their inversion offers no specific difficuliies.

It is a relatively simple matter to prove the analog of Lemma
2 for the discrete case—namely, that either || <" 1 everywhere
or |¢] = 1 everywhere—for any solution (4, A,, A,) of the
discrete Ginzburg—Landau equations. Again, one uses a gauge
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X that renders i real at any point P, where |1}/ reaches a maxi-
mum, and at each of the four neighbors of P and uses the real
part of Eqg. (3.19). Note that, in this case, the gauge y can be
chosen such that yr is real at all grid points, simply by taking
x = —arg ¥ if y # 0 and y = (© otherwise. However, this
gauge does not preserve the periodicity conditions.

3.3. Numerical Methods

The system of nonlinear equations (3.19), (3.20), (3.21) can
be solved, for example, by Newton’s method (or some modifi-
cation thereof). Such an approach generally leads to a local
minimum of the free-energy functional. We have implemented
it, in combination with a sweeping method for solving the linear
systemn of algebraic equations for the order parameter. We have
also implemented an alternative method based on gradient flow.
In either case, we use the value of the free-energy functional
to monitor convergence.

3.3.1. Modified Newton’s Method

The first method for solving the system of nonlinear equations
(3.19), (3.20), (3.21} 15 based on Newton’s method. A Newton’s
method leads to the following iterative scheme, Starting from
asuitably chosen triple (@, AP, A™), one computes a sequence
of triples (™, AY, AP, n = 1, 2, ..., as follows. At any step
n, one first updates by solving the equation

(B(g(pwl) +1— 2|¢-fﬂ—lj|2)(¢(ﬂ) _ i"b("k”)

- (Wﬂ_”)z(*}"(”)* — u';(ﬂ-l)*) = — @I'Wax»i)]_ (3.25)

Here, 070 = $(A¢", A™Y). Having found 4%, one then
updates A, and A, by solving the equations

KzgyA,g'") — Re("b(n)*Ug’nfl)*!!;(u)_.)(A)(:,) . A'(‘”*”)

= — 1AV, (3.26)

1 n n— " & —
KIL AP — — 3 Re(gf U= 1# g y(AP — Al

¥ column

= F [AF]. (3.27)

In a modified Newton’s method, one takes the approximation
(w(nkl)yw,(n)* — Iy (lp(!ﬁ—l)‘ﬁ(dl(n] — e,b(”'”) (3.28)
in (3.25) and the approximations

RE( w(ﬂ)’!‘- U_(rn— Ui w(n)—v) P wlmll’
Ry Uty ~ Wpof,

(3.29)

in (3.26) and (3.27), respectively. Thus, the equations reduce to

(L0701 =3[y OB = o) = —~F[Po0L, (330)
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AP~ [OFAY — AP = ~F AT, (33D)
Z&E A(n) — i E |2 Aty Aln-Dy — G n=1)
ICLAP = 2 [pHAR — APY) = ~F LAY (3.3D)

v column

There are still potential ditficulties with this modified Newton’s
method. As we have seen (Lemma 4), the operator & is nega-
tive-definite Hermitian, so its dominant eigenvalue (A,) is nega-
tive. As long as | — 3|™[* is less than |A,|, the operator in
the left member of (3.30) is also negative-definite Hermitian,
s0 {3.30) can be solved for the increment ¥ — ® Y. But this
condition may not always be satisfied; in fact, we have found
that A, approaches zero as the density of the vortices in {) {i.e.,
the relative volume occupied by the vortices in {)) decreases,
in which case it becomes increasingly likely that 1 — 3|t® will
exceed || and the modified Newton’s method will fail to
converge. For this reason, we have used a further medification,
introducing a ‘‘damping factor’” 89 and replacing (3.30) by
the general equation
(SN — S — Yoy = —F[pe ). (333)
We take 8“9 = 1 — 3|y D or increase the value of §¢7"
as necessary to ensure that (3.30) is solvable. Similarly, we
make use of damping factors in (3.31) and (3.32),

(W, — SUINAP — AUy = —F JAPY), (334
(K*F, — SV YNAP — AP = —F (AP, (3.39)
where 8070 = [g»2 and 8¢V = (1/N,) Zeoum |, or we

may take 8¢V and 67"V equal to some positive constants
for convenience.

In our implementations, we normally start from a randomly
chosen initial configuration (4%, A®, A®) and monitor the con-
vergence of the iterative process by means of the free-energy
functional. The iterative process is terminated when the free-
energy functional varies less than a preassigned tolerance in
several successive iterations. The rate of convergence is af-
fected by the choice of the damping factors in (3.33), (3.34),
and {3.35). During most of the iterative process, we ignore the
gauge choice (i) of L.emma |—that is, A, is constant along
the line y = yx for some real y. The resulting iterates A™ may
vary nonsmoothly, but the canonical gauge transformation is
applied at the end of the entire computation or whenever needed
to smooth out the irregularities. By repeating the calculations
for several choices of the initial configuration and tolerance
level, we convince ourselves that the eventual configuration 1s
acceptable as the computed solution of the GL model.

3.3.2. Sweeping Algorithm

The system of Egs. (3.33) is usually soived as a matrix
equation for the vector {of length N, X N,) of unknowns ;.
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The coefficient matrix is sparse, so the solution can be accom-
plished by means of special sparse-matrix techniques of numeri-
cal linear algebra. This approach has been applied with success,
for example, by Jones and Plassmann [14].

We have applied an alternative approach, based on the sweep-
ing algorithm described in [15]. The method is similar to the
shooting method for the numernical solution of two-point bound-
ary value problems for second-order differential equations.

In the sweeping algorithm, the system of Eqgs. (3.33) is
viewed as a nonhomogeneous stencil equation for the unknown
matrix i (of order N, X N,)},

S[pl=C+ L=+ Ry~ + Ul + Dyt = b, (3.36)
Here, C, L, R, U, and D are given matrices of order N, X N,,
and & is a given matrix (also of order N, X N,). (As usual,
we suppress the column and row indices; for example, Cy =
(Cyny; = Cydr;.) The stencil equation is governed by a five-
point stencil, which connects each element to its four neighbors
(left, right, up, and down). The stencil varies from one element
to the next, but otherwise it is similar to that of the Laplacian
on a rectangular mesh, (In the case of the Laplacian, the stencil
isconstant: C= -4, L=R=U=D=1)

In the present case, none of the elements of L and R vanish,
s0 we can solve (3.36) for ¢~ or ¢,

b~ =RUb — [Cf+ Ly Ul + D)),
W =L""b— [Cy+ R+ Ud" + DY

(3.37
(3.38)

These two expressions enable us to compute the columns of
the matrix by sweeping to the right with (3.37) or the left
with (3.38), starting with any two adjacent columns of .
The simplest one-dimensional sweeping algorithm goes as
follows. We start by constructing a trial solution i of (3.36),
letting the first two columns of i be identically zero and using
(3.37) to compute the remaining N, — 2 columns, The discrep-
ancy between the solution # of (3.36) and the trial solution is
measured by the error (column vector of length 2N,)

e=(b,— STdlY, i=0,.,N—1,

(3.39)
J=N~-2,N— L

Next, we construct 2N, matrices y that all satisfy the homoge-
neous equation S[y] = 0. Starting from the first two columns,
taking all the elements but one in these two columns equal to
() and the one nonzero element equal to 1, and putting this
nonzero element successively in each of the 2N, locations in
these two columns, we generate the matrices y by applying the
sweeping operation

y= = —RNCy + Ly + Uy' + Dy}) (3.40)

from left to right. From each matrix y thus generated we take
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FIG. 2. Sample configuration, k = 5, n = 2, L = 3, N = 24. Free energy § = 16.2295 4232, (Left) Vortex configuration; contour lines for [¢f = 0.05,
0.1, 0.15, 0.2. (Right) Magnetic field; contour lines for 8 = 0.804, 0.805, 0.806, 0.807, 0.808, (1.809.

the last two columns to form a vector of length 2¥,, (—S[y],),
i=0,.,N —1j=N,— 2 N, — 1, which we juxtapose to
obtain a rectifying matrix . Thus, the columns of % represent
the change in the error vector e if we modify the appropriate
element in the initial columns of i by 1. Hence, to make ¢
vanish, we must modify the initial columns of ¥ by R"'e. The
vector —%R~'e gives, therefore, the first twe columns of the
correct solution  of (3.36). The full matrix ¢r is then found
by one more sweep to the right. The sweeping algorithm thus
requires the inversion of only one matrix of order 2N,; it is
essentially a direct (as opposed to an iterative) method for
inverting the stencil,

A bidirectional sweeping algorithm can be devised by choos-
ing the initial columns in the center of the matrix . The two
sweeps can be performed in parallel.

One difficulty with the sweeping algorithm is that ¢~ and
< can grow quite rapidly; the algorithm thus becomes prone to
rounding errors. Furthermore, the rectifying matrix % becomes
more ill-conditioned as N, gets large. We have used two modi-
fications to overcome these difficulties; cf. [15]. A multistage
sweeping algorithm divides the columns into several smaller
sweeping ranges. A rectifying matrix is computed for each
range; the global rectifying matrix is then constructed either
explicitly or implicitly from these local rectifying matrices. The
algorithm is still a direct method for inverting the stencil. A
partial sweeping algorithm divides ¢ into subdomains, over
each of which the stencil is solved under the assumption that
the value of ¢ is fixed outside the subdomain. The substencil
is thus solved independently over each subdomain, and the
algorithm parallelizes naturally. If the subdomains are small
enough, the instability of the sweeping algorithm is no longer
a problem. However, errors are introduced near the boundaries
of the subdomains, since there is no communication across
subdomain boundaries. If the matrix is negative definite, the
iterative application of the partial sweeping algorithm gives a
sequence that converges to the exact solution. In our experi-
ments we have observed that the rate of convergence can be
improved significantly if one decomposes the matrix 4 in two
alternate ways, so that the subdomain boundaries of one decom-
position fall into the interior of the subdomains of the other
decomposition.

3.3.3. Integration Method

In some instances, we have observed that the modified New-
ton’s method outlined in the preceding section gets stuck at a
local minimum that is not a global minimum. In such cases,
which admittedly are hard to recognize, it is useful to have an
alternative method. For this purpose we use an integration
method, where we introduce a time-like variable ¢ and integrate
the gradient flow,

s = FL, aA = FIAL A, = FA), (41
until the solution equilibrates. Although ¢ is introduced purely
for numerical reasons, the system of Eqs. (3.41) may reflect,
at least qualitatively, the time evolution of a superconducting
medium near T, from a given initial state; see, for example,
[11]. We use the forward Euler method for the integration of
the system (3.41).

4. COMPUTATIONAL EXPERIMENTS

4.1, Sample Configurations

We begin by providing a few sample configurations for dif-
ferent values of the input parameters. They were computed for
unit cells = [0, L\/§] X [0, L] on grids with equal numbers
of mesh points in the x- and y-directions, N, = N, = N. In
these computations, we did not minimize over the parameters
e and B3, but fixed o = V3 and 3 = 1. Thus we imposed the
constraint that the vortex configuration be hexagonal and rota-
tionally symmetric in the plane. (Experiments with variable
aspect ratios are reported in the next section.) The constraint
(ii) of Lemma 1—A, constant along the line y = yx for some
real y—was implemented with y = 0, so A, is constant along
the lower (and upper) edge of the unit cell. Various (small,
medium, and large) values of the Ginzburg—Landau parameter
were considered, but the sample configurations presented here
are all for k = 5. The remaining parameter is the number of
vortices per unit cell, n. All computations were done in double
precision with Matlab 4.0 Beta 3. This programming environ-
ment enabled us to maintain flexibility and make changes with-
out much effort.
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FIG. 3. Sample configuration; x = 5, n = 2, L = 6, N = 24. Free energy § = 0.7304 0904. (Left) Vortex configuration; contour lines for i = 0.1,
4.3, 0.5, 0.7, 0.9, (Right} Magnetic field; countour lines far 8 = §.165, 0.200, ¢.205, 0.210, 0.215.

Figure 2 shows a configuration with two vortices per unit
cell. In the left part of the figure, we have plotted contour lines
for the superelectron density | (J¥° = 0.25 everywhere);
each traversal of a contour yields a change of the phase of
by 27. In the right part of the figure, we have plotted contour
lines for the induced magnetic field B.

In Fig. 3, we again have two vortices per unit cell, but the
unit cell has four umes the size of the unit cell in Fig. 2.
Consequently, the average induced magnetic field (right part
of the figure) is reduced by a factor of four, according to (2.4),
and the free energy is much smaller than in the case of Fig. 2.
Also, we are closer to the lower critical field H,,, |¢/]* (left part
of the figure) is larger on average than in Fig. 2 (but still less
than 1 everywhere}, and the size of the vortices is much smaller.

Figure 4 demonstrates that the numerical method remains
effective when the number of vortices per unit cell increases.
The figure also illustrates the effect of the grid size. The config-
uration of Fig. 4 is similar to that of Fig. 2. The unit cell of
Fig. 4 is eight times that of Fig. 2, but the number of vortices
per unit cell is eight times larger, so the average magnetic field
is the same in both cases, as is confirmed in the right part of
the figure. The solution of Fig. 4 could be obtained by replicat-
ing that of Fig. 2. However, the solution of Fig. 4 was computed
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on a 36 X 36 grid and that of Fig. 2 is on a 24 X 24 grid. The
effect of the finer grid size is not visible in the contour lines,
bur it shows up in the value of the free energy; the average
value of the free energy for a two-vortex cell that is of the
same size as the unit cell of Fig. 2 is slightly less than the free
energy per unit cell in Fig. 2.

4.2. Aspect Ratio and Symmietry

As we emphasized in Section 2, there is no a priori reason
to assume hexatic order and rotational symmetry in the plane.
1f such symmetries exist, they should follow from the model.
However, the assumptions are commonly made (as we did in
the preceding section) to reduce the amount of computation.
But by doing so, one restricts the class of admissible triples
(¥, A, A,) over which one minimizes the free-energy functional.
The problem is avoided only if one leaves the aspect ratio o
and the lattice angle 8 free and performs an additional minimi-
zation with respect to these variables.

We designed a series of experiments to analyze, in particular,
the effect of . In these experiments we took a two-voriex cell
with 8 = | and varied L and o, while keeping the area of the
unit cell constant, oef? = 9V/3. Thus, if @ = V/3, then L = 3

FIG. 4. Sample configuration; k = 5, » = 16, L = 6, N = 36. Average free energy per two-vortex cell § = 16.2286 1710. (Left) Vortex configuration;
contour lines for |ff* = 0.05, 0.1, 0,15, 0.2. (Right) Magnetic field; contour lines for B = 0.804, 0.803, 0.806, 0.807, 0.808, 0.809.
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F1G. 5. Effect of the aspect ratio on the minimum free energy. The vertical
coordinate is the quantity 4 — 16.2295 4232 for the minimym-energy configu-
ration, the horizontal coerdinate is the aspect ratio . Parameter values: « =
S, =2 N=24al?=9V3

and we recover the configuration of Fig. 2, which is hexagonal
and rotationally symmetric. As in the preceding section, we
took a grid with the same number of grid points in the x- and
y-directions, N, = N, = N. Figure 5 gives a graph of the
quantity 4§ — 16.2295 4232 associated with the minimum-
energy configuration as a function of a. The smallest value of
the minimum free energy occurs at a,y = [.7818 8311, which
is greater than V3 = 1.7320 5081. Hence, the computed vortex
configuration is asynumetric.

The optimal aspect ratio o, at which the computed free
energy is minimal, varies with the grid, as can be seen from
Table 1.

The data of Table I are plotted in Fig. 6 (open circles). A
second-degree extrapolation of the data in Table I gives limy .
e == 1.7320 71, which is close to V3 = 1.732051. Hence,
it is fair to say that these experiments indicate that symmetry
is recovered in the limit as the mesh size goes to zero.

4.3. Upper Critical Field

When a perfectly superconducting sample is subjected to an
applied magnetic field of increasing strength, the superelectron

TABLE 1

Variation of the Opiimal Aspect Ratio with the
Number of Grid Points

N ot N Oty

4 1.8780 0903 24 1.7818 8311
16 1.8438 4800 26 17745 4061
18 1.8204 4045 28 1.7687 0494
20 1.8037 1459 30 1.7639 9548
22 17913 2357
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FIG. 6. Variation of the optimmal aspect ratio with the mesh size. The
vertical coordinate is the optimal aspect ratio, the horizontal courdinate rhe
reciprocal of the number of mesh points. The open circles represent computed
values; the solid curve is a second-degree polynomial fit.

density [¢* decreases until the sample enters the mixed state.
The transition occurs at the lower critical field H,,, when
first vanishes and cne or more vortices begin to form. As
the field strength increases further, the superelectron density
decreases further until max{[y(x, y)| : (x, y} € @} = 0. At that
point, all superconductivity disappears and the sample enters
the normal (i.e., nonsuperconducting) state. This transition oc-
curs at the upper critical field H,,. Commputationaliy, one can
simulate this physical experiment by decreasing the size of the
unit ceil, while keeping the number of vortices per unit cell
fixed. The procedure is based on the discrete virial theorem of
Doria er af. [16]; in our system of units, the virial theorem is

KZEH = %((gkin + zcgﬁeid)a (4-1)

where Gy, and “Gg,; are the kinetic and field energy per unit area,

B = gy [ Q00RO+ P Ur b Ay, 4

1

G = @

j R@AY + K@AD dxdy.  (43)

We recall that B, the average induced magnetic field, is related
to the size of the domain and the number of vortices in the
unit cel! by (2.4). By decreasing L, while keeping n fixed, we
increase the average induced magnetic field B. Having found
the solution (¢, A, A,), we compute the kinetic and field energy
according to (4.2) and (4.3). Then the appiied magnetic field
H follows from (4.1).

Doria et al. used this procedure to compute the lower critical
field H, in [5]. Here we demonstrate that the same procedure
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FIG.7. Calculation of the upper critical field H,,. Graph of max [’ against
the external field & for a sample with x = 5.

can be used to compute the upper critical field H,. In Fig. 7,
we present the result of such an experiment, The data are for
a two-vortex cell, with o = V3 and B = 1. The maximum
value of the superelectron density is plotted against the external
magnetic field. The density is zero when the external ficld H
reaches the value H.» = 1.0031 6868; at this point, L. = 2.68929.
The value of H, is close to [, which is its value in the system
of units adopted in this investigation.

4.4. Empirical Power Law

In a final experiment, we constructed a very simple model for
vortex interactions. Assuming a hexagonal lattice and rotational
symmetry in the plane, where d is the distance between a vortex
and its nearest neighbor, we investigated the quality of an
empirical power-law interaciion,

G=a+ bd, 4.4)
where a, b, and v are constants, to be determined fram the
experiments. The graph plotting the free energy against d is
shown in Fig. 8. To test the suitability of such a power law,

we used a portion of our data (marked by open circles in Fig.
8) to determine the constants by means of a least-squares fit,

@ = -026129173, b = 12748, y = 39574 (4.5}

We subsequently used these constants to plot the curve in Fig.
8. The curve is seen to give an excellent fit to the remaining
data (marked by crosses in Fig. 8).

13]
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FIG. 8. Empirical power law for vortex interaction. The graph plots the
free energy against the distance hetween neighboring vortices in a regular
fhiexatic attice.
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